vanishing cycle - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

vanishing cycle - translation to ρωσικά

Vanishing cycles

vanishing cycle         

математика

эквивалентный нулю цикл

vanishing line         
JAPANESE ANIME TELEVISION SERIES
Vanishing Line

['væniʃiŋlain]

общая лексика

линия схода (в перспективе)

математика

исчезающая линия

water circulation         
  • Diagram of the water cycle
  • language=en}}</ref>
  • issn=1752-0894}}</ref>
  • Processes leading to movements and phase changes in water}}
CONTINUOUS MOVEMENT OF WATER ON, ABOVE AND BELOW THE SURFACE OF THE EARTH
Hydrologic cycle; Hydrological cycle; Phases of water cycle; The Water Cycle; Hydrologic Cycle; Water Cycle; Hydrolic cycle; The Hydrological cycle; Water circulation; Plant uptake; Ocean retention time; H2O cycle; Water cycling; Precipitation cycle; Rain cycle
циркуляция воды; круговорот воды

Ορισμός

Otto cycle
·add. ·- A four-stroke cycle for internal-combustion engines consisting of the following operations: First stroke, suction into cylinder of explosive charge, as of gas and air; second stroke, compression, ignition, and explosion of this charge; third stroke (the working stroke), expansion of the gases; fourth stroke, expulsion of the products of combustion from the cylinder. This is the cycle invented by Beau de Rochas in 1862 and applied by Dr. Otto in 1877 in the Otto-Crossley gas engine, the first commercially successful internal-combustion engine made.

Βικιπαίδεια

Vanishing cycle

In mathematics, vanishing cycles are studied in singularity theory and other parts of algebraic geometry. They are those homology cycles of a smooth fiber in a family which vanish in the singular fiber.

For example, in a map from a connected complex surface to the complex projective line, a generic fiber is a smooth Riemann surface of some fixed genus g and, generically, there will be isolated points in the target whose preimages are nodal curves. If one considers an isolated critical value and a small loop around it, in each fiber, one can find a smooth loop such that the singular fiber can be obtained by pinching that loop to a point. The loop in the smooth fibers gives an element of the first homology group of a surface, and the monodromy of the critical value is defined to be the monodromy of the first homology of the fibers as the loop is traversed, i.e. an invertible map of the first homology of a (real) surface of genus g.

A classical result is the Picard–Lefschetz formula, detailing how the monodromy round the singular fiber acts on the vanishing cycles, by a shear mapping.

The classical, geometric theory of Solomon Lefschetz was recast in purely algebraic terms, in SGA7. This was for the requirements of its application in the context of l-adic cohomology; and eventual application to the Weil conjectures. There the definition uses derived categories, and looks very different. It involves a functor, the nearby cycle functor, with a definition by means of the higher direct image and pullbacks. The vanishing cycle functor then sits in a distinguished triangle with the nearby cycle functor and a more elementary functor. This formulation has been of continuing influence, in particular in D-module theory.

Μετάφραση του &#39vanishing cycle&#39 σε Ρωσικά